29 resultados para MOLECULAR EVOLUTION

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na(+)/K(+)-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na(+)/K(+)-ATPase H1-H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na(+)/K(+)-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The natriuretic peptide (NP) family consists of multiple subtypes in teleosts, including atrial, B-type, ventricular, and C-type NPs (ANP, BNP, VNP, CNP-1–4, respectively), but only ANP, BNP, CNP-3, and CNP-4 have been identified in tetrapods. As part of understanding the molecular evolution of NPs in the tetrapod lineage, we identified NP genes in the chicken genome. Previously, only BNP and CNP-3 have been identified in birds, but we characterized two new chicken NP genes by cDNA cloning, synteny and phylogenetic analyses. One gene is an orthologue of CNP-1, which has only ever been reported in teleostei and bichir. The second gene could not be assigned to a particular NP subtype because of high sequence divergence and was named renal NP (RNP) due to its predominant expression in the kidney. CNP-1 mRNA was only detected in brain, while CNP-3 mRNA was expressed in kidney, heart, and brain. In the developing embryo, BNP and RNP transcripts were most abundant 24 h post-fertilization, while CNP mRNA increased in a stage-dependant manner. Synthetic chicken RNP stimulated an increase in cGMP production above basal level in chicken kidney membrane preparations and caused a potent dose-dependant vasodilation of pre-constricted dorsal aortic rings. From conserved chromosomal synteny, we propose that the CNP-4 and ANP genes have been lost in chicken, and that RNP may have evolved from a VNP-like gene. Furthermore, we have demonstrated for the first time that CNP-1 is retained in the tetrapod lineage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atrial natriuretic peptide (ANP) and B-type NP (BNP) are hormones involved in homeostatic control of body fluid and cardiovascular regulation. Both ANP and BNP have been cloned from the heart of mammals, amphibians, and teleost fishes, while an additional cardiac peptide, ventricular NP, has been found in selected species of teleost fish. However, in chicken, BNP is the primary cardiac peptide identified thus far. In contrast, the types of NP/s present in the reptilian heart are unknown, representing a considerable gap in our understanding of NP evolution. In the present study, we cloned and sequenced a BNP cDNA from the atria of representative species of reptile, including crocodile, lizard, snake, and tortoise. In addition, we cloned BNP from the pigeon atria. The reptilian and pigeon BNP cDNAs had ATTTA repeats in the 3′ untranslated region, as observed in all vertebrate BNP mRNAs. A high sequence homology was evident when comparing reptile and pigeon preproBNP with the previously identified chicken preproBNP. In particular, the predicted mature BNP-29 was identical between crocodile, tortoise, and chicken, with pigeon having a single amino acid substitution; lizard and snake BNP had seven and nine substitutions, respectively. Furthermore, an ANP cDNA could only be cloned from the tortoise atria. Since ANP was not isolated from the heart of any non-chelonian reptile and appears to be absent in birds, we propose that the ANP gene has been lost after branching of the turtles in the amniote line. This data provides new avenues for research on NP function in reptiles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The heart produces natriuretic peptides that are critical regulators of blood pressure and renal function. This study examined the molecular evolution of natriuretic peptides in vertebrates and discovered novel forms of the peptides in birds. The research outcomes advanced our knowledge of the importance of these peptides in animal physiology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lactation, an important characteristic of mammalian reproduction, has evolved by exploiting a diversity of strategies across mammals. Comparative genomics and transcriptomics experiments have now allowed a more in-depth analysis of the molecular evolution of lactation. Milk cell and mammary gland genomic studies have started to reveal conserved milk proteins and other components of the lactation system of monotreme, marsupial, and eutherian lineages. These analyses confirm the ancient origin of the lactation system and provide useful insight into the function of specific milk proteins in the control of lactation. These studies also illuminate the role of milk in the regulation of growth and development of the young beyond simple nutritive aspects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reabsorption of filtered urea by the kidney is essential for retaining high levels of urea in marine cartilaginous fish. Our previous studies on the shark facilitative urea transporter (UT) suggest that additional UT(s) comprising the urea reabsorption system could exist in the cartilaginous fish kidney. Here, we isolated three cDNAs encoding UTs from the kidney of elephant fish, Callorhinchus milii, and termed them efUT-1, efUT-2 and efUT-3. efUT-1 is orthologous to known elasmobranch UTs, while efUT-2 and efUT-3 are novel UTs in cartilaginous fish. Two variants were found for efUT-1 and efUT-2, in which the NH2-terminal intracellular domain was distinct between the variants. Differences in potential phosphorylation sites were found in the variant-specific NH2-terminal domains. When expressed in Xenopus oocytes, all five UT transcripts including the efUT-1 and efUT-2 variants induced more than a 10-fold increase in [14C] urea uptake. Phloretin inhibited dose-dependently the increase of urea uptake, suggesting that the identified UTs are facilitative UTs. Molecular phylogenetic analysis revealed that efUT-1 and efUT-2 had diverged in the cartilaginous fish lineage, while efUT-3 is distinct from efUT-1 and efUT-2. The present finding of multiple UTs in elephant fish provides a key to understanding the molecular mechanisms of urea reabsorption system in the cartilaginous fish kidney.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The project focusses on the discovery of conserved DNA sequences in bacterial genomes and comparative analysis of bacterial genomes to elicit evolutionary trends. The outcomes have produced novel techniques for modelling motifs in DNA and the characterisation of evolutionary processes in medically significant bacterial pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The zinc hydrolase superfamily is a group of divergently related proteins that are predominantly enzymes with a zinc-based catalytic mechanism. The common structural scaffold of the superfamily consists of an eight-stranded β-sheet flanked by six α-helices. Previous analyses, while acknowledging the likely divergent origins of leucine aminopeptidase, carboxypeptidase A and the co-catalytic enzymes of the metallopeptidase H clan based on their structural scaffolds, have failed to find any homology between the active sites in leucine aminopeptidase and the metallopeptidase H clan enzymes. Here we show that these two groups of co-catalytic enzymes have overlapping dizinc centers where one of the two zinc atoms is conserved in each group. Carboxypeptidase A and leucine aminopeptidase, on the other hand, no longer share any homologous zinc-binding sites. At least three catalytic zinc-binding sites have existed in the structural scaffold over the period of history defined by available structures. Comparison of enzyme-inhibitor complexes show that major remodeling of the substrate-binding site has occurred in association with each change in zinc ligation in the binding site. These changes involve re-registration and re-orientation of the substrate. Some residues important to the catalytic mechanism are not conserved amongst members. We discuss how molecules acting in trans may have facilitated the mutation of catalytically important residues in the active site in this group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than expected retention times for matriarchal lineages in the superciliosus clade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Knowing the correct sex of individuals is essential both for research in evolutionary ecology and for practical conservation. Recent molecular advances have produced cheap, quick and reliable methods for sexing birds including chicks, juveniles, immatures and adults. Shorebird researchers have not yet fully utilised these advances. Here we provide an overview of work in this area to date with two objectives: (i) to review the major applications of molecular sexing and findings of shorebird research so far, and (ii) to provide an essential guide on how to carry out molecular sexing using current methods whilst avoiding methodological pitfalls. We encourage shorebird researchers to make better use of molecular sex-typing techniques in studies of conservation, migration, foraging ecology and breeding behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the considerable variation in milk composition found among mammals, a constituent common across all groups is lactose, the main sugar and osmole in most eutherians milk. Exceptions to this are the families Otariidae (fur seals and sea lions) and Odobenidae (walruses), where lactose has not been detected. We investigated the molecular basis for this by cloning α-lactalbumin, the modifier protein of the lactose synthase complex. A mutation was observed which, in addition to preventing lactose production, may enable otariids to maintain lactation despite the extremely long inter-suckling intervals during the mother's time at sea foraging (more than 23 days in some species).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Freshwater prawns in the genus Macrobrachium are found throughout the tropical and subtropical regions of the world, however, evolutionary relationships are poorly understood. Using molecular techniques taxonomic uncertainty is resolved and the evolution and distribution of this enigmatic genus across a range of taxonomic and geographic levels is examined.